The EH 0.0/9.0

The EH 0.0/9.0 is another in a series of sections designed by John Yost; it has no camber and is 9% thick. As a symmetrical section it has a pitching moment of zero and a relatively limited maximum lift coefficient. For enthusiasts of tailless planforms, however, the EH 0.0/9.0 has at least two useful functions. The EH 0.0/9.0 can be used as the section of choice for vertical stabilizers, whether as "winglets" or as a single central fin. It can also be used in a more fundamental role as a thickness distribution in conjunction with a predetermined camber line.

As a vertical surface section, the EH 0.0/9.0 may be considered by some to be somewhat thick. However, as other of the EH sections have been thinned successfully, there should be no major concern over thinning this section as well. Such thinning should be done in moderation; 7% should be the minimum thickness considered.

If the EH 0.0/9.0 is used to place a thickness distribution around a camber line, we would highly recommend using the algebraic rather than the trigonometric method. The trigonometric method involves adding the thickness distribution along an artificial axis which is perpendicular to the local camber line, while the algebraic method always adds the thickness distribution parallel to the Y axis. The algebraic method is far easier to accomplish and gives a leading edge shape which seems to provide better stall characteristics.

For those of you who wish to use camber lines appropriate for plank planforms, see "On the Wing...," *RC Soaring Digest*, June 1990. That column provides the formulae for camber lines with various crossover points. If you do not have that specific back issue of *RCSD*, the column is reprinted in "On the Wing... the book," published by our own B²Streamlines. The reprint also includes a computer program which calculates various reflexed camber lines and then imposes a chosen thickness distribution.

<u>EH 0.0/9.0</u>			
х	Y	х	Y
X 100.000 99.901 99.606 99.114 98.429 97.553 96.489 95.241 93.815 92.216 90.451 88.526 86.448 84.227 81.871	Y 0.000 0.004 0.018 0.092 0.158 0.243 0.243 0.243 0.345 0.463 0.597 0.748 0.916 1.100 1.297 1.505	X 0.099 0.394 0.886 1.571 2.447 3.511 4.759 6.185 7.784 9.549 11.474 13.552 15.733 18.129 20.611	Y -0.289 -0.623 -0.984 -1.350 -1.726 -2.094 -2.445 -2.778 -3.087 -3.370 -3.624 -3.847 -4.039 -4.198 -4.323
79.389 76.791 74.088 71.289 68.406 62.435 59.369 56.267 53.139 50.000 46.961 42.722	1.724 1.950 2.181 2.415 2.648 3.104 3.320 3.526 3.716 3.895 4.054 4.191	23.209 25.912 28.711 31.594 34.549 37.565 40.631 43.733 46.961 50.000 53.139 56 267	-4.415 -4.474 -4.500 -4.495 -4.460 -4.396 -4.306 -4.396 -4.191 -4.054 -3.895 -3.716 2.526
40.631 37.565 34.549 31.594 28.711 25.912 23.209 20.611 18.129 15.733 13.552	4.306 4.396 4.460 4.495 4.500 4.474 4.415 4.323 4.198 4.039 3.847 2.624	59.369 62.435 68.406 71.289 74.088 76.791 79.389 81.871 84.227 86.448 88.526	-3.320 -3.104 -2.648 -2.415 -2.181 -1.950 -1.724 -1.505 -1.297 -1.100 -0.916
9.549 7.784 6.185 4.759 3.511 2.447 1.571 0.886 0.394 0.099 0.000	3.024 3.370 3.087 2.778 2.445 2.094 1.726 1.350 0.984 0.623 0.289 0.000	92.216 93.815 95.241 96.489 97.553 98.429 99.114 99.606 99.901 100.000	-0.748 -0.597 -0.463 -0.345 -0.243 -0.158 -0.092 -0.046 -0.018 -0.004 0.000

